Exercise 14

If a rock is thrown upward on the planet Mars with a velocity of $10 \mathrm{~m} / \mathrm{s}$, its height (in meters) after t seconds is given by $H=10 t-1.86 t^{2}$.
(a) Find the velocity of the rock after one second.
(b) Find the velocity of the rock when $t=a$.
(c) When will the rock hit the surface?
(d) With what velocity will the rock hit the surface?

Solution

Determine the velocity first.

$$
\begin{aligned}
v(t) & =H^{\prime}(t) \\
& =\lim _{h \rightarrow 0} \frac{H(t+h)-H(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[10(t+h)-1.86(t+h)^{2}\right]-\left[10 t-1.86 t^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[10 t+10 h-1.86\left(t^{2}+2 t h+h^{2}\right)\right]-10 t+1.86 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(10 t+10 h-1.86 t^{2}-3.72 t h-1.86 h^{2}\right)-10 t+1.86 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 h-3.72 t h-1.86 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(10-3.72 t-1.86 h) \\
& =10-3.72 t
\end{aligned}
$$

Therefore, the velocity at $t=1$ is

$$
v(2)=10-3.72(1)=6.28 \frac{\mathrm{~m}}{\mathrm{~s}},
$$

and the velocity of the rock at $t=a$ is

$$
v(a)=10-3.72(a)=(10-3.72 a) \frac{\mathrm{m}}{\mathrm{~s}} .
$$

The rock hits the surface at $H=0$. Solve this equation for t to find the time when this happens.

$$
\begin{gathered}
H=0 \\
10 t-1.86 t^{2}=0 \\
t(10-1.86 t)=0 \\
t=0 \quad \text { or } \quad 10-1.86 t=0 \\
t=0 \quad \text { or } \quad t=\frac{10}{1.86} \approx 5.38 \mathrm{~s}
\end{gathered}
$$

The rock hits the surface at about 5.38 seconds. Plug this time into the velocity function to determine how fast the rock is moving at impact.

$$
v\left(\frac{10}{1.86}\right)=10-3.72\left(\frac{10}{1.86}\right)=-10 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

